В каком веществе заключена наследственная информация. Наследственная информация записана не только в днк

В каждом человеке заложено стремление продолжить свой род и произвести здоровое потомство. Определенное сходство между родителями и детьми обусловлено наследственностью. Помимо очевидных внешних признаков принадлежности к одной семье, генетически передается и программа индивидуального развития в разных условиях.

Наследственность – что это такое?

Рассматриваемый термин определяется, как способность живого организма сохранять и обеспечивать преемственность своих отличительных признаков и характера развития в последующих поколениях. Понять, что такое наследственность человека, легко на примере любой семьи. Черты лица, телосложение, внешность в целом и характер детей всегда будто позаимствованы у одного из родителей, бабушки или дедушки.

Генетика человека

Что такое наследственность, особенности и закономерности этой способности изучает специальная наука. Человеческая генетика является одним из ее разделов. Условно она классифицируется на 2 типа. Основные виды генетики:

  1. Антропологическая – изучает изменчивость и наследственность нормальных признаков организма. Данный раздел науки связан с эволюционной теорией.
  2. Медицинская – исследует особенности проявления и развития патологических признаков, зависимость возникновения заболеваний от условий окружающей среды и генетической предрасположенности.

Виды наследственности и их характеристика

Информация о специфических признаках организма содержится в генах. Биологическая наследственность дифференцируется по их типу. Гены присутствуют в органоидах клетки, расположенных в цитоплазматическом пространстве – плазмидах, митохондриях, кинетосомах и других структурах, и в хромосомах ядра. На основании этого выделяют следующие виды наследственности:

  • внеядерная или цитоплазматическая;
  • ядерная или хромосомная.

Цитоплазматическая наследственность

Характерной чертой описываемого типа воспроизведения специфических признаков является их передача по материнской линии. Хромосомная наследственность обусловлена преимущественно информацией из генов сперматозоидов, а внеядерная – яйцеклетки. В ней содержится больше цитоплазмы и органелл, отвечающих за передачу индивидуальных особенностей. Эта форма предрасположенности провоцирует развитие хронических врожденных болезней – , сахарного диабета, синдрома туннельного зрения и других.


Указанный вид передачи генетической информации является определяющим. Часто только его имеют в виду, объясняя, что такое человеческая наследственность. В хромосомах клетки содержится максимальное количество данных о свойствах организма и его специфических признаках. Также в них заложена программа развития в определенных внешних условиях среды. Ядерная наследственность – это передача генов, заложенных в молекулах ДНК, которые входят в состав хромосом. Она обеспечивает постоянную преемственность информации из поколения в поколение.

Признаки наследственности человека

Если у одного из партнеров темно-карие глаза, высока вероятность аналогичного оттенка радужки у ребенка независимо от ее цвета у второго родителя. Это объясняется тем, что признаки наследственности существуют 2-х типов – доминантные и рецессивные. В первом случае индивидуальные характеристики являются преобладающими. Они подавляют рецессивные гены. Второй вид признаков наследственности может проявиться только в гомозиготном состоянии. Такой вариант возникает, если в ядре клетки комплектуется пара хромосом с идентичными генами.

Иногда у ребенка наблюдается сразу несколько рецессивных признаков, даже если у обоих родителей они доминантные. Например, у смуглого отца и матери с темными волосами рождается светлокожий малыш с белокурыми локонами. Такие случаи наглядно демонстрируют, что такое наследственность – не просто преемственность генетической информации (от родителей детям), а сохранение всех признаков определенного рода в пределах семьи, включая предшествующие поколения. Цвет глаз, волос и другие особенности могут передаваться даже от прабабушек и прадедушек.

Влияние наследственности

Генетика пока продолжает изучать зависимость характеристик организма от его врожденных свойств. Роль наследственности в развитии и состоянии здоровья человека не всегда определяющая. Ученые выделяют 2 типа генетических признаков:

  1. Жестко детерминированные – формируются еще до рождения, включают особенности внешнего вида, группу крови, и другие качества.
  2. Относительно детерминированные – сильно подвержены влиянию внешней среды, склонны к изменчивости.

Если речь идет о физических показателях, генетика и здоровье имеют выраженную взаимосвязь. Наличие мутаций в хромосомах и серьезных хронических заболеваний у ближайших родственников обуславливают общее состояние человеческого организма. Внешние признаки полностью зависят от наследственности. Касательно интеллектуального развития и особенностей характера влияние генов считается относительным. На такие качества сильнее действует внешняя окружающая среда, чем врожденная предрасположенность. В данном случае она играет незначительную роль.

Наследственность и здоровье

Каждая будущая мать знает о влиянии генетических особенностей на физическое развитие ребенка. Сразу после оплодотворения яйцеклетки начинает формироваться новый организм, и наследственность играет определяющую роль в возникновении у него специфических признаков. Генофонд отвечает не только за наличие серьезных врожденных болезней, но и менее опасных проблем – предрасположенности к кариесу, выпадению волос, подверженности вирусным патологиям и других. По этой причине на осмотре у любого врача специалист сначала собирает подробный семейный анамнез.

Можно ли влиять на наследственность?

Для ответа на поставленный вопрос можно сравнить физические показатели нескольких предыдущих и последних поколений. Современная молодежь значительно выше ростом, имеет более крепкое телосложение, хорошие зубы и высокую предполагаемую продолжительность жизни. Даже такой упрощенный анализ показывает, что можно влиять на наследственность. Изменить генетические особенности в плане интеллектуального развития, черт характера и темперамента еще легче. Это достигается благодаря улучшению окружающих условий, корректному воспитанию и правильной атмосфере в семье.

Прогрессивные ученые уже давно проводят опыты, позволяющие оценить влияние медицинских вмешательств на генофонд. В этой сфере достигнуты впечатляющие результаты, подтверждающие, что можно еще на этапе исключить возникновение генных мутаций, предотвратить развитие серьезных заболеваний и умственных нарушений у плода. Пока исследования проводятся исключительно на животных. Для начала опытов с участием людей есть несколько морально-этических препятствий:

  1. Понимая, что такое наследственность, военные организации могут использовать разработанную технологию для воспроизводства профессиональных солдат с усовершенствованными физическими способностями и высокими показателями здоровья.
  2. Не каждая семья сможет себе позволить выполнить процедуру по самой полноценной яйцеклетки максимально качественным сперматозоидом. В результате красивые, талантливые и здоровые дети будут рождаться только у состоятельных людей.
  3. Вмешательство в процессы естественного отбора практически равноценны евгенике. Большинство специалистов в области генетики считают ее преступлением против человечества.

Вопрос 1

Генетика как наука.

Предмет, проблемы, задачи, методы генетики. Основные этапы развития генетики.

Предмет.

Генетика изучает наследственность и изменчивость.

Слово «генетика» придумал У. Бэтсон (1906), Он же определили науку как физиологию наследственности и изменчивости. Почему люди разнообразны, почему так похожи друг на друга как представители одного вида или как родственники?

Ответ на эти вопросы дает генетика, и ответ – одинаков, потому, что каждый человек получил наследственные задатки – гены от своих родителей. Благодаря механизму наследования каждый индивидуум имеет черты сходства с предками.

Этапы развития .

Первые представления о наследственности содержатся в трудах ученых античной эпохи.

Уже к 5 в. до н. э. сформировались две основные теории: прямого и непрямого наследования признаков. Сторонниками прямого наследования был Гиппократ, который считал, что репродуктивный материал собирается из всех частей тела, и таким образом, все органы тела непосредственно влияют на признаки потомства. По мнению Гиппократа, здоровые части тела поставляют здоровый репродуктивный материал, а нездоровые – нездоровый, и в резу-те признаки, приобретаемые в течение жизни, должны наследоваться.

Аристотель был сторонником непрямого наследования. Он считал, что репродуктивный материал вовсе не поступает из всех частей тела, а производится из питательных ве-в, по своей природе, предназначенных для построения разных частей тела.

Дарвин высказал теорию, согласно которой, у растений или животных, все клетки отделяют от себя крошечные геммулы, рассеянные по всему организму, геммулы попадают в репродуктивные органы, таким образом признаки передаются потомкам.

(Гипотеза Пангенезиса) Она была опровержена. Мендель еще в 1865 г. Выпустил в свет работу «Опыты над растительными гибридами» но ее никто не принял во внимание, его не поняли. Ни один из его предшественников не догадался проанализировать свои резу-ты количественно.

Главная заслуга Менделя в том, что он сформулировал и применил принципы гибридологического анализа для проверки конкретной гипотезы – о наследственной передачи дискретных факторов.

Только в 1900 году они были заново открыты Де Фризом в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии. Было доказано, что те же законы справедливы и для животных. За эти 35 лет после Менделевских открытий вошла в науку и клеточная теория, было выяснено поведение хромосом, установлено постоянство хромосомных наборов, ядерная гипотеза наследственности, хромосомная теория Томас Морган.

В 1919 первая кафедра генетике в Петроградском университете (основатель Филипченко) В 1930 кафедра генетики в Московском университете.

На рубеже 40-х Дж. Бидл и Э. Тейтум заложили основы биохимической генетики. Они показали, что мутации у хлебной плесени блокируют различные этапы клеточного метаболизма и высказали предположение, что гены контролируют биосинтез ферментов. В 1944 г. американские ученые доказали генетическую роль нуклеиновых кислот. Они идентифицировали природу трансформирующего агента как молекулы ДНК. (Рождение молекулярной генетики) Расшифровка ДНК – американский вирусолог Дж.

Уотсон и английский физик Ф. Крик. (1953)

Методы.

Гибридологический – заключается в гибридизации и последующем учете расщеплений, был предложен Менделем.

1) скрещиваемые организмы должны принадлежать к одному виду.

2) Скр.орг. должны четко различаться по отдельным признакам.

3) изучаемые признаки должны быть константны, те воспроизводиться из поколения в поколение при скрещивании в пределах линии.

4) Необходимы характеристика и количественный учет всех классов расщепления, если оно наблюдается у гибридов первого и последующего поколений.

Позволяет выяснить степень родства между отдаленными родами и видами.

Математический

Мендель применил количественный подход к изучению резу-ов скрещиваний.

Сравнение количественных данных эксперимента с теоретически ожидаемыми. Изучение изменчивости наследственной или модификационной.

Цитологический

Нужен для изучения клетки как основной единицы живой материи.

Исследование строения хромосом.

Методы химии и биохимии

Применимы для более детального изучения характеристики наследуемых признаков обмена ве-в, изучения сво-в молекул белков и нуклеиновых кислот.

Методы иммунологии и иммунохимии.

Методы физики

Оптические, седиментационные, методы меченых атомов,.

Задачи:

Выявление наследственных заболеваний на ранних стадиях, изучение мутагенной активности и тд. и тп.

Вопрос 2

Генетическая информация содержится в хромосомах. При делении клетки митозом в дочерние клетки попадает одинаковый набор хромосом, образуется клон.

При мейозе происходит кроссинговер (генетическая рекомбинация), в дочерние клетки попадают измененные хромосомы с гаплоидным набором хромосом.

Независимое расхождение хромосом при мейозе и независимая встреча гамет – основа генетической изменчивости.

12345678910Следующая ⇒

Похожая информация:

Поиск на сайте:

0911-0920

911. В загрязненной экологической среде вредные вещества достигают наибольшей концентрации в организмах
А) растений
Б) травоядных животных
В) хищников
Г) насекомых-опылителей

В целях устойчивого развития и сохранения биосферы человек
А) полностью уничтожает хищников в экосистемах
Б) регулирует численность популяций отдельных видов
В) увеличивает численность травоядных животных
Г) увеличивает численность насекомых-вредителей

913. Отложения бокситов и железной руды являются результатом функции живого вещества
А) газовой
Б) окислительно-восстановительной
В) миграционной
Г) биохимической

Конспект

Агроэкосистемы менее устойчивы, чем экосистемы, так как в них
А) нет продуцентов и редуцентов
Б) ограниченный видовой состав растений
В) животные занимают первый трофический уровень
Г) замкнутый круговорот веществ и превращения энергии

Конспект

Укажите глобальную экологическую проблему современного человечества
А) активное расселение людей по планете
Б) рост численности населения Земли
В) создание новых сортов растений и пород животных
Г) акклиматизация растений и животных

Конспект

916. На каком уровне организации происходит реализация наследственной информации
А) биосферном
Б) экосистемном
В) популяционно-видовом
Г) организменном

Конспект

Сколько хромосом содержится в соматических клетках человека
А) 26
Б) 36
В) 46
Г) 56

Конспект

Синтез белка происходит в
А) аппарате Гольджи
Б) рибосомах
В) гладкой эндоплазматической сети
Г) лизосомах

Конспект

Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК
А) ЦГТ
Б) АГЦ
В) ГЦТ
Г) ЦГА

Конспект

920. Пластический обмен в клетке характеризуется
А) распадом органических веществ с освобождением энергии
Б) образованием органических веществ с накоплением в них энергии
В) всасыванием питательных веществ в кровь
Г) перевариванием пищи с образованием растворимых веществ

© Д.В.Поздняков, 2009-2018


Adblock detector

1. Доказательство роли ДНК в наследственности.

2. Химический состав и структура нуклеиновых кислот.

3. Строение и типы РНК.

4. Генетический код.

Синтез белка в клетке.

Проведенные исследования на микроорганизмах с применением новейших методов исследований, структурного анализа, электронной микроскопии, меченных атомов и т.д. позволили установить, что генетическое строение сосредоточено на нуклеиновых кислотах.

Гриффит впервые получил доказательства возможной передачи наследственных задатков от одной бактерии к другой. Ученый вводил мышам вирулентный капсульный и авирулентный бескапсульный штамм пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали.

При введении авирулентного бескапсульного штамма мыши не погибали.

При введении вирулентного капсульного штамма убитого нагреванием, мыши также не гибли.

В следующем опыте он ввел смесь живой культуры вирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного и получил неожиданный результат – мыши заболели пневмонией.

Из крови погибших животных были выделены бактерии, которые обладали вирулентностью. Следовательно, живые бактерии авирулентного бескапсульного штамма трансформировались – приобрели свойство убитых болезнотворных бактерий.

Основывая на этих опытах, 1944 г. О. Эвери и др. доказали, что трансформирующим фактором является ДНК.

Генетическая теория реализуется в процессе биосинтеза белков. Все основания свойства живых организмов определяются структурой и функцией белковых молекул.

В последние 40 лет в ряде лабораторий разных стран мира было выяснено, что синтез специфических белков предопределен генетически. В молекулах ДНК зашифрована наследственная информация о строении каждого белка. ДНК обеспечивает хранение и передачу генетической информации из поколения в поколение. Участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или р-РНК, называют геном. Реализация наследственной информации осуществляется с участием РНК.

Белки — структурная основа всех клеток, органов и тканей организма.

Главные структурные элементы белковых молекул – 20 аминокислот. Специфика строения белковой молекулы определяется наличием определенных аминокислот и порядком их расположения в полипептидных цепях.

В данном разделе изучаются следующие вопросы: структура и функции нуклеиновых кислот (ДНК, РНК); генетический код и его основные свойства; строение, функции и основные свойства гена; строение и функционирование генетического материала у прокариот (бактерий, вирусов, фагов, плазмид), генетическая инженерия, ее методы и практическое значение.

Важным открытием в молекулярной генетике явилось установление Дж.Уотсоном и Ф.Криком структуры молекулы ДНК в виде двойной спирали.

После ознакомления со строением и особенностями репликации ДНК переходите к изучению строения, типов и функции РНК, при этом выясните остальные отличия РНК от ДНК.

Обратите внимание на размеры молекул разных типов РНК.

После изучения этих вопросов необходимо внимательно ознакомиться с проблемой генетического кода и биосинтеза белка. В 50-60 годы установлены основные понятия генетического кода: нуклеотид ДНК или РНК – это “буква языка”; триплет или кодон (три нуклеотида) – “Слово языка” – соответствует аминокислоте, а ген (около 1000 пар азотистых оснований) – “фраза”, в соответствии с которой синтезируется полипептидная цепь.

Генетический код состоит из 64 триплетов (43=64), кодирующих 20 аминокислот (3 , с. 90-92).

Ознакомившись с генетическим кодом синтеза белка, рассмотрите процесс синтеза полипептидной цепи аминокислот в цитоплазме. В нем участвуют рибосомы, и-РНК, т-РНК, ферменты.

Это последний этап перехода генетической информации от гена к структуре белка, или трансляция.

Отметьте, что в составе генов имеются транскрибируемые участки, несущие информацию о структуре белка (экзоны); участки, не несущие такой информации (интроны); а также регуляторные участки для опознания гена и точки начала считывания при транскрипции.

Литература: 1 , с.

133-168; 2 , с.197-214; 3, с. 77-102; 4, с. 74-91;

Дата публикования: 2014-11-29; Прочитано: 319 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Передача наследственной информации (понятие о митозе и мейозе, законы Менделя)

Предыдущая123456789Следующая

Мейоз и митоз

Мейоз - это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое.

Он состоит из двух последовательно идущих деле-ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна.

В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме-ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется .

Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло-дотворенную яйцеклетку называют зиготой .

Митоз , или непрямое деление , наиболее широко рас-пространен в природе.

Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь-ных фаз (см. далее таблицу). Благодаря митозу обеспечи-вается равномерное распределение генетической информа-ции родительской клетки между дочерними.

Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща-ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой.

К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас-средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис-ходит дальнейшая спирализация хромосом.

В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи-ваются, вновь образуются ядрышки и ядерные мембраны.

В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу-ются две новые дочерние.

законы Менделя

установленные Г. Менделем закономерности распределения в потомстве наследств, признаков.

Основой для формулировки М. з. послужили многолетние (1856-63) опыты по скрещиванию неск. сортов гороха. Современники Г. Менделя не смогли оценить важности сделанных им выводов (его работа была доложена в 1865 и вышла в свет в 1866), и лишь в 1900 эти закономерности были переоткрыты и правильно оценены независимо друг от друга К.

Корренсом, Э. Чермаком и X. Де Фризом. Выявлению этих закономерностей способствовало применение строгих методов подбора исходного материала, спец.

схемы скрещиваний и учёта результатов экспериментов. Признание справедливости и значения М. з. в нач. 20 в. связано с определ. успехами цитологии и формированием ядерной гипотезы наследственности. Механизмы, лежащие в основе М.

з., были выяснены благодаря изучению образования половых клеток, в частности поведения хромосом в мейозе, и доказательству хромосомной теории наследственности.

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку.

При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминировапие). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны - Аа), а значит, и по фенотипу.

Закон расщепления , или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определ.

соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодомииировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т.

е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), к-рое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расшепления по фенотипу в соответствии со вторым законом Менделя.

Закон независимого комбинирования (наследования) признаков , или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определ.

соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования).

При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Этот закон основан на независимом поведении (расщеплении) неск. пар гомологичных хромосом (рис. 2). Напр., при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, aB, ab) и после образования зигот - закономерному расщеплению по генотипу и соответственно по фенотипу.

Как один из М.

з. в генетич. лит-ре часто упоминают закон чистоты гамет. Однако, несмотря на фундаментальность этого закона (что подтверждают результаты тетрадного анализа), он не касается наследования признаков и, кроме того, сформулирован не Менделем, а У.

Бэтсоном (в 1902).

Для выявления М. з. в их классич. форме необходимы: гомозиготность исходных форм, образование у гибридов гамет всех возможных типов в равных соотношениях, что обеспечивается правильным течением мейоза; одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении; одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении, либо к искажению соотношения разл.

гено- и фенотипов. М. з., вскрывшие дискретную, корпускулярную природу наследственности, имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом.

Для полиплоидов выявляют принципиально те же закономерности наследования, однако числовые соотношения гено- и фенотипич. классов отличаются от таковых у диплоидов. Соотношение классов изменяется и у диплоидов в случае сцепления генов («нарушение» третьего закона Менделя).

В целом М. з. справедливы для аутосомпых генов с полной пенетрантностью и постоянной экспрессивностью. При локализации генов в половых хромосомах или в ДНК органоидов (пластиды, митохондрии) результаты реципроксных скрещиваний могут различаться и не следовать М. з., чего не наблюдается для генов, расположенных в аутосомах.

М. з. имели важное значение - именно на их основе происходило интенсивное развитие генетики на первом этапе. Они послужили основой для предположения о существовании в клетках (гаметах) наследств, факторов, контролирующих развитие признаков. Из М. з. следует, что эти факторы (гены) относительно постоянны, хотя и могут находиться в разл. состояниях, парны в соматич.

клетках и единичны в гаметах, дискретны и могут вести себя независимо по отношению друг к другу. Всё это послужило в своё время серьёзным аргументом против теорий «слитной» наследственности и было подтверждено экспериментально.

4 Генетическая изменчивость. Понятие о мутациях (типы мутаций и их роль в видообразовании)

Мута́ция (лат. mutatio - изменение) - стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды.

Процесс возникновения мутаций получил название мутагенеза .

Причины мутаций

Мутации делятся на спонтанные и индуцированные .

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 - 10 − 12 на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке.

Основные процессы, приводящие к возникновению мутаций - репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Предыдущая123456789Следующая

Наследственная информация ЭМБРИОЛОГИЯ ЖИВОТНЫХ

НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ, ГЕНЕТИЧЕСКАЯ ИНФОРМАЦИЯ – информация о признаках и свойствах организма, передаваемая по наследству. У многоклеточных организмов передается при помощи половых клеток – гамет. Записана в виде последовательности нуклеотидов в молекуле ДНК, которая и определяет синтез специфических белков клетки и соответствующее развитие всех признаков и свойств организма.


Общая эмбриология: Терминологический словарь - Ставрополь . О.В. Дилекова, Т.И. Лапина . 2010 .

Смотреть что такое "наследственная информация" в других словарях:

    Наследственная информация - * спадчынная інфармацыя * hereditary information последовательность нуклеотидов в молекуле ДНК, определяющая синтез специфических белков клетки, РНК, тРНК, и развитие на их основе соответствующих признаков организма (). Наследуемое свойство это… … Генетика. Энциклопедический словарь

    НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ - генетическая информация о наследственных структурах организма, получаемая от предков в виде совокупности генов. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    наследственная информация - см. Генетическая информация … Большой медицинский словарь

    Наследственная информация - Нуклеиновые кислоты (от лат. nucleus ядро) высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют… … Википедия

    НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ - последовательность нуклеотидов в молекуле ДНК, определяющая синтез специфических белков клетки и развитие на их основе соответствующих признаков организма …

    Генетическая (наследственная) информация - специфически кодированные в организмах программы, получаемые ими от предков и заложенные в их наследственных структурах в виде совокупности генов о составе, строении и характере обмена составляющих организм веществ …

    Наследственная трансмиссия - представляет собой переход права на принятие наследования, то есть, если наследник, призванный к наследованию по завещанию или по закону, умер после открытия наследства, не успев его принять в установленный срок, право на принятие причитавшегося… … Википедия

    Информация генетическая (наследственная) - (см. Информация, Генетика) программа свойств организма, заложенная в наследуемых структурах (ДНК, отчасти в РНК) и получаемая от предков в виде генетического кода. Наследуемая информация определяет морфологическое строение, рост, развитие, обмен… … Начала современного естествознания

    генетическая информация - (син. наследственная информация) информация о строении и функциях организма, заложенная в совокупности генов … Большой медицинский словарь

    ГЕНЕТИЧЕСКАЯ ИНФОРМАЦИЯ - см. наследственная информация … Словарь ботанических терминов

Книги

  • , Спектор Анна Артуровна , Этот иллюстрированный атлас уникален тем, что не проведет юного читателя по странам и континентам, а наглядно покажет анатомию человека. Как в молекуле ДНК собранався наследственная… Категория: Человек. Земля. Вселенная Серия: Детский иллюстрированный атлас Издатель: Аванта , Купить за 696 руб
  • Детский иллюстрированный атлас анатомии человека , Спектор А. , Этот иллюстрированный атлас уникален тем, что не проведет юного читателя по странам и континентам, а наглядно покажет анатомию человека. Как в молекуле ДНК собранався наследственная… Категория:

Задание А28

Метаболизм клетки. Энергетический обмен и фотосинтез. Реакции матричного синтеза

2.5 Обмен веществ и превращения энергии – свойства живых организмов. Энергетический и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле

Обмен веществ.

Главное свойство всех живых организмов – обмен веществ, представляет собой совокупность взаимосвязанных процессов превращения веществ в организме. Основу обмена веществ составляют процессы синтеза и распада, которые, по сути, противоположны, но составляют единое целое.

Обмен веществ (метаболизм)
Энергетический обмен (катаболизм, диссимиляция, распад) Пластический обмен (анаболизм, ассимиляция, синтез)
Сложные вещества распадаются до более простых. Происходит синтез более сложных соединений из более простых.
Энергия выделяется. Часть ее запасается в АТФ, а другая часть рассеивается в виде тепла. АТФ расщепляется, а выделяющаяся энергия расходуется на образование химических связей вновь синтезированных молекул.
Организм обеспечивается энергией, необходимой для всех процессов жизнедеятельности, в том числе для реакций пластического обмена. Организм обеспечивается строительным материалом, необходимым для роста, развития организма и для процессов жизнедеятельности.

Из таблицы видно, что пластический и энергетический обмен – процессы противоположные. Рассмотрим пример.

6CO 2 + 6H 2 O + энергия ↔ C 6 H 12 O 6 + 6O 2

Если читать слева направо, то это упрощенное уравнение фотосинтеза (т.е. пластический обмен), в ходе которого из углекислого газа и воды с использованием солнечной энергии образуются углеводы и выделяется кислород. А если читать справа налево, то это упрощенное уравнение расщепление глюкозы (т.е. энергетический обмен), в ходе которого образуются углекислый газ, вода и выделяется энергия.



Пластический и энергетический обмен тесно взаимосвязаны. Реакции энергетического обмена идут с участием ферментов, которые образуются в ходе пластического обмена. Но, чтобы эти самые ферменты образовались, необходима энергия, которая выделяется в ходе реакций энергетического обмена.

Стадии энергетического обмена.

1) Первый этап – подготовительный :

· происходит в пищеварительной системе и (или) в лизосомах;

· полимеры расщепляются до мономеров (белки до аминокислот, полисахариды до моносахаридов), жиры до глицерина и жирных кислот;

· энергии выделяется мало, вся она рассеивается в виде тепла, АТФ не образуется.

2) Второй этап – гликолиз (анаэробный этап, бескислородный этап ):

· происходит в цитоплазме;

· глюкоза расщепляется до пировиноградной кислоты (ПВК);

· образуется 2 молекулы АТФ;

Судьба пировиноградной кислоты зависит от наличия кислорода и от того, в чьих клетках она образовалась. Если в клетках достаточно кислорода, то ПВК поступает в митохондрии и там полностью окисляется до углекислого газа и воды (третий этап). При недостатке кислорода ПВК превращается в молочную кислоту. Например, при длительной нагрузке наблюдается накопление молочной кислоты в мышцах.

У некоторых организмов (например, у дрожжей) продуктом гликолиза является спирт. Этот процесс называется спиртовым брожением. У анаэробных организмов гликолиз является единственным способом получения энергии.

3) Третий этап – полное окисление (аэробный этап, кислородный этап, клеточное дыхание ):

· происходит в митохондриях (не считая нескольких начальных реакций);

· образуется 36 молекул АТФ;

· ПВК полностью окисляется до углекислого газа и воды.

В этом этапе можно выделить три основных момента:

Сначала ПВК превращается в особое вещество, которое называется Ацетил-KoA, и именно оно уже поступает в митохондрии;

В матриксе митохондрий Ацетил-КоА вовлекается в цикл Кребса (цикл трикарбоновых кислот) и полностью окисляется до углекислого газа;

На складках внутренней мембраны (кристах) происходит окислительное фосфорилирование, в ходе которого синтезируется основная масса АТФ.

Фотосинтез.

Фотосинтез – процесс создания органических веществ из неорганических с использованием энергии солнечного света. Фотосинтез происходит в клетках растений, содержащих хлоропласты, и в клетках цианобактерий. Фотосинтез включает две стадии: световую и темновую.

Световая стадия.

· Происходит только на свету.

· Происходит на мембранах тилакоидов образованных внутренней мембраной хлоропластов.

· Происходит фотолиз воды, в результате которого образуется молекулярный кислород, который в данном случае является побочным продуктом и удаляется в окружающую среду. При фотолизе воды образуются также ионы водорода (H +), которые связываются с молекулами переносчиками (НАДФ) и в дальнейшем используются в реакциях темновой фазы.

· Образуется АТФ, также необходимый для реакций темновой фазы.

Темновая стадия.

· Происходит в строме хлоропласта.

· Углекислый газ поглощается из окружающей среды и поступает в хлоропласты.

· НАДФ∙Н (образовавшийся в световой стадии) высвобождает водород;

· Энергия АТФ расходуется на процесс: 6СО 2 + 24Н → С 6 Н 12 О 6 + 6Н 2 О;

· Образуется глюкоза, которая затем превращается в крахмал.

Хемосинтез.

Хемосинтез – процесс образования органических веществ из неорганических с использованием энергии, выделяющейся при окислении неорганических соединений. Хемосинтез открыт отечественным ученым С.Н. Виноградским. Как и все автотрофные организмы, хемосинтезирующие бактерии выполняют в биосфере роль продуцентов.

К хемотрофным организмам относятся ряд бактерий:

1) серобактерии окисляют сероводород до серы или до сульфатов;

2) железобактерии окисляют Fe +2 до Fe +3

3) водородные бактерии выделяющийся при гниении молекулярный водород до H + ;

4) нитрифицирующие бактерии окисляю аммиак до нитритов и нитратов.

Элементы содержания, проверяемые на ЕГЭ:

2.6 Генетическая информация в клетке. Гены, генетический код и его свойства.

Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Наследственная информация.

Все организмы отличаются друг от друга различными признаками. Все внешние и внутренние признаки и особенности обмена веществ зависят от наличия в организме определенных белков. Наследственная информация – это информация о белках, которые должны синтезироваться в организме . А если наследственная информация – информация о белках, значит реализация этой информации – процесс синтеза белка. Наследственная информация записана в молекулах ДНК (или РНК у ряда вирусов). Участок ДНК, содержащий информацию о первичной структуре белка, называется геном .

Генетический код.

ДНК (а значит и каждый ген) представляет собой последовательность нуклеотидов, а белок – последовательность аминокислот. Принцип соответствия последовательности нуклеотидов ДНК последовательности аминокислот в белке называется генетическим кодом .

Свойства генетического кода:

1) Триплетность – каждая аминокислота кодируется тремя нуклеотидами. Три нуклеотида – триплет.

2) Специфичность (однозначность) – каждый триплет кодирует только одну кислоту. Например, триплет ААА кодирует только аминокислоту фенилаланин и никакую другую.

3) Избыточность (вырожденность) – аминокислота может кодироваться разными триплетами. Например, аминокислота серин может кодироваться любым из шести триплетов: АГА, АГГ, АГЦ, АГТ, ТЦА, ТЦГ. Благодаря избыточности генетического кода некоторые генные мутации не оказывают влияния на фенотип. Например, замена последнего нуклеотида в триплете АГА на любой другой никак не изменит последовательность аминокислот в белке, потому что получившийся новый триплет всё равно будет кодировать аминокислоту серин.

4) Универсальность – генетический код одинаков у всех живых организмов. Так триплет ААА кодирует фенилаланин у человека, грибов, растений, бактерий и вирусов. Универсальность генетического кода свидетельствует о единстве происхождения органического мира. Благодаря универсальности генетического кода возможна «пересадка» генов из генома одного вида в геном другого, лежащая в основе генной инженерии.

5) Наличие знаков препинания. Существуют триплеты, которые не кодируют аминокислоты. Они являются сигналом начала или окончания синтеза определенной полипептидной последовательности.

Уральский институт экономики, управления и права

Курганский филиал

Реферат

по предмету: Концепция современного естествознания

на тему: Генетическая информация

Работу выполнила:

Студентка 1 курса

Заочного отделения

Работу проверила:

Курган 2010

Введение……………………………………………………….…3

1 Молекула ДНК…………………………………………………………...4

2 Генетический код………………………………………………….…….8

3 Программа «Геном человека»……………………………………….….9

4 Генетическая инженерия……………………………………………….10

5 Клонирование животных……………………………………………….13

Заключение………………………………………………………16

Список литературы………………………………………..…….17

ВВЕДЕНИЕ.

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.
Генетическая информация определяет морфологическое строение,
рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Современная биология утверждает, что одна из главных черт жизни - это самовоспроизводимость. Самовоспроизводимость - это способность живого организма к размножению, рождению и выращиванию себе подобных.
Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.

1. МОЛЕКУЛА ДНК.

Структура молекулы ДНК была изучена в 1953 г. Дж.Уотсоном и Ф.Криком. Они установили, что молекула ДНК состоит из двух цепей, образующих двойную спираль, которая закручена вправо (по часовой стрелке). К полимерному остову спиральной цепи ДНК (состоит из чередующихся остатков фосфата и сахара дезоксирибозы) "прикреплены" нуклеотидные остатки. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию. Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Цепи ДНК - комплементарны, т.е. имеется взаимное соответствие между их нуклеотидами, которые образуют уотсон-криковские пары Г-Ц и А-Т. Сами же цепи в двойной спирали антипараллельны.

Схематический вид молекулы ДНК

Итак, напомним, что в основе самовоспроизводства лежит способность молекулы ДНК к удвоению, которое называется репликацией ДНК. Репликация ДНК основана на принципе комплементарности, что хорошо иллюстрируется схемой.

Удвоение молекулы ДНК.

В живой клетке удвоение происходит потому, что две спиральные цепи расходятся, а потом каждая цепь служит матрицей, на которой с помощью особых ферментов собирается подобная ей новая спиральная цепь ДНК. В результате вместо одной ДНК образуются две, неотличимые по строению от родительской молекулы ДНК.

Репликация ДНК.

В результате создаются две двойные спирали ДНК (дочерние молекулы), каждая из которых имеет одну нить, полученную из материнской молекулы, и одну нить, синтезированную по комплементарному принципу.
Теперь обсудим, как происходит передача информации в клетке. Напомним, что участок молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет двумя путями: - по каналу прямой связи (ДНК - РНК - белок); и по каналу обратной связи (среда - белок - ДНК).
Синтез белка происходит в рибосомах клетки. К ним из ядра поступает информационная (или матричная) РНК (иРНК), которая может проникать через порог ядерной мембраны. Что же такое
иРНК ?
иРНК это: .
а) одноцепочечная молекула, комплементарная одной нити ДНК; .
б) копия ДНК; .
в) копия не всей молекулы ДНК, а лишь ее части (по длине). Эта часть соответствует одному или группе рядом лежащих генов;
г) молекула, образованная под действием специального фермента - РНК-полимеразы, которая, продвигаясь по нити ДНК, ведет синтез иРНК; данный процесс называется транскрипцией.

Как определяется длина части ДНК, с которой снимается копия в виде иРНК?

В начале этой части и в ее конце находятся специфические последовательности нуклеотидов, которые может "узнавать" РНК-полимераза и таким образом "определять" участок считывания.
Весь процесс репликации, осуществляемый разными белками-ферментами, очень согласован, поэтому часто употребляют термин - работа "репликационной машины". Репликация идет с очень высокой точностью. ДНК млекопитающего состоит из 3 млрд. пар нуклеотидов, а в процессе воспроизведения допускается не более 3 ошибок.
При этом надо помнить, что синтез идет с большой скоростью - от 50 до 500 нуклеотидов/сек, поэтому в клетке существуют специальные корректирующие механизмы: ДНК-полимеразы дважды проверяют соответствие нуклеотидов исходной матрице. .
Итак, в процессе синтеза белка иРНК, пройдя через ядерную мембрану, поступает в цитоплазму к рибосомам, где осуществляется:

а) расшифровка генетической информации,

б) синтез из аминокислот биополимерной макромолекулы белка.

Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК). В клетке имеется столько аминокислот, сколько типов кодонов, шифрующих аминокислоты.

2. ГЕНЕТИЧЕСКИЙ КОД.

Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка. .
Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У) задает любую из 20 аминокислот.
Свойства генетического кода: .
а) Код триплетен.
Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном.
б) Код вырожден.
Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту). .
в) Код однозначен.
Каждый кодон соответствует только одной аминокислоте.

г) Генетический код универсален , т.е. един для всех живых организмов планеты.

Таким образом, ген представляет собой чередование "слов из трех букв" - кодонов, образованных из четырехбуквенного алфавита.

Необходимо особо подчеркнуть универсальность генетического кода - с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором - лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.


3. ПРОГРАММА «ГЕНОМ ЧЕЛОВЕКА»

Международная программа "Геном человека" посвящена решению проблемы картирования генов человека. Число генов в составе ДНК человека - около 50-60 тысяч, что составляет только 3% общей длины ДНК; роль остальных 97% пока неясна. В каждой клетке человека содержится 46 молекул ДНК, которые распределены в 23 парах хромосом. Хромосомы - это структуры, по которым распределена полная молекула ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке человека равна около 2 метров. Полная же длина всех молекул ДНК в теле взрослого человека, состоящего из 5х10 13 клеток, составляет 10 11 км, что в тысячу раз превышает расстояние от Солнца до Земли. .
К настоящему времени практически полностью расшифрована полная последовательность ДНК человека. .
Главная задача исследований - изучить вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить генетические различия между ними. Анализ таких различий позволит построить индивидуальные генные портреты людей, что даст возможность лучше лечить болезни. Кроме того, такой анализ позволит выявить различия между популяциями и выявить географические районы повышенного риска поражения генома людей. Таким образом, благодаря геномным исследованиям стало ясно, что в ходе эволюции жизни на Земле сначала выделились представители архей, имеющих клетки без ядер, а позже - эукариот (состоящих из клеток с ядрами), включая человека. Геномными исследованиями было выявлено также совпадение нуклеотидных последовательностей у неродственных видов. Это дает основания предположить, что в процессе эволюции происходил перенос генов от одного вида к другому. Например, оказалось, что геномы человека и мыши весьма близки - их нуклеотидные последовательности совпадают более чем на 90%.

4. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ.

"Генетическая или генная инженерия" - создание новых генетических структур и создание организмов с новыми наследственными свойствами. С помощью биохимических и генетических методик происходит изменение хромосомного материала - основного наследственного вещества клеток. Биоинженеры изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. .
Генная инженерия принципиально отличается от классической селекции по следующим пунктам: .
1) Можно (нельзя) скрещивать неродственные виды; .
2) Можно (нельзя) извне управлять процессом рекомбинации в организме (постоянство своего генетического состава организм очень надежно охраняет);
3) Можно (нельзя) предугадать, какое получится потомство.
Ученым было необходимо разработать методику введения гена в клетку. Причём нужно было научиться не просто вводить ген в цитоплазму, а встраивать его в собственную молекулу ДНК клетки, так, чтобы новая информация могла быть "прочитана" биосинтетическим аппаратом клетки, вырабатывающим белки, а также воспроизводящим гены при делении клетки. Новый ген (или его фрагмент) должен очень точно располагаться в ДНК с соблюдением ряда условий, для того чтобы клетка действительно начала синтезировать новые ферменты. Надо было также обойти сопротивляемость клетки-хозяина: как правило, все изменения генетического аппарата воспринимаются клеткой как "ошибки информации" и исправляются специальными механизмами. .
(Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать "свой" белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку.)
Важное открытие - обнаружение в бактериальных клетках, помимо главной ее хромосомы, внехромосомных кольцевых молекул ДНК - плазмид. Плазмиды можно извлечь из одной клетки и перенести в другую. Плазмиды можно разрезать, фрагменты сращивать друг с другом, а затем такие комбинированные плазмиды вводить в клетки. Поскольку плазмидная ДНК представляет собой замкнутую кольцевую молекулу, кольцо нужно сперва разорвать таким образом, чтобы свободные концы были в химическом отношении реакционноспособными, пригодными для последующего соединения. Достичь этого удается либо простым механическим путем (например, сильным встряхиванием), либо с помощью различных ферментов, называемых нуклеазами (рестриктазами) . Затем фрагменты ДНК соединяют с помощью лигаз - ферментов , исправляющих повреждения в ДНК и сшивающих (склеивающих) концы ее разорванных нитей.
Рестриктазы-ферменты - способны расщеплять ДНК в строго определенном месте с образованием "липких" концов у образуемых фрагментов. Иными словами, с помощью рестриктаз ген можно разрезать на кусочки - нуклеотиды, а затем с помощью лигаз такие кусочки можно "склеивать", соединять в иной комбинации, конструируя новый ген.

Осуществление введение генных конструкций в бактериальную клетку.
Сначала плазмиды режут рестриктазами и получают односпиральные концы, комплементарные концам генов, проводят гибридизацию гена и плазмиды в пробирке, а затем рекомбинантную плазмиду вводят в клетку.
Плазмиды содержат маркерный ген, например ген, сообщающий клетке устойчивость к определенному антибиотику. .
В рекомбинантных клетках плазмида участвует в процессах репликации, транскрипции и трансляции нового введенного в клетку гена.
Синтезируется продукт этого гена, который в природных клетках никогда ранее не мог образоваться.

Подчеркнем, что in vitro проводится только рекомбинация, а все остальные превращения с плазмидой происходят в клетке так же, как и со своими собственными генами. .
Итак, основные процедуры в генной инженерии сводятся к следующему:
1) рекомбинация плазмиды и ДНК-гена; .
2) введение рекомбинантной плазмиды в клетку; .
3) молекулярное клонирование (технология клонирования наименьших биологических объектов - молекул ДНК, их частей и даже отдельных генов)

Достижения генной инженерии.

Технологии генной инженерии разрабатываются не очень много времени, они имеют крупные достижения и в медицине, и в сельском хозяйстве. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. .
В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены трансгенные растения , например сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Перспективы генной инженерии. .
На основе детального анализа возможностей и реальных достижений генной инженерии составлены научные прогнозы на начало ХХI века. Высказаны, например, надежды, что в ближайшие годы будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010 году будут установлены механизмы возникновения почти всех видов рака. К 2013 году завершится разработка препаратов, предотвращающих рак. .
Не менее важна сегодня генная диагностика. Обычно молекулярная диагностика проводится по белкам, и, как правило, с помощью других белков-антител. Недостатки такой диагностики - обнаружение болезни на поздней стадии. Но теперь можно диагностировать и по генам (ДНК), и по синтезированным на них РНК еще до того, как в организме начали синтезироваться и накапливаться чужеродные белки.
Не имея возможности детально останавливаться на генной терапии, кратко перечислим некоторые проблемы, которыми занимаются ученые:
доставка генов к клеткам-мишеням организма и нуклеиновых кислот внутрь клеток, блокировка или разрушение вредного гена либо блокировка продуцируемой им РНК с помощью антисмысловых ДНК или РНК,
введение нового активного гена или регулятора активности гена. Лечение наследственных болезней целиком зависит от успехов в этом направлении,
введение генов или комплексов генов, блокирующих клеточное деление или вызывающих клеточную смерть, как средство кардинальной раковой терапии.
Отметим также важность биотехнологии для техники: например, создание биосенсоров на основе биологических макромолекул или конструирование биологически возобновляемых источников энергии.

5. КЛОНИРОВАНИЕ ЖИВОТНЫХ.

Клонирование в биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Эти копии должны обладать идентичной наследственной информацией, т.е. нести идентичный набор генов. .
Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами. .
Наибольшее интерес представляет клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Создавая особые условия и вмешиваясь в структуру ядра клетки специалисты заставляют развиваться её в нужную ткань или даже в целый заранее намеченный организм. Причём открыты не только методы воспроизведения того организма, из которого клетка была взята, но и другого организма - того, от которого был взят только генетический материал. Появилась принципиальная возможность воспроизведения даже умершего организма. И даже тогда, когда от него остались минимальные части - лишь бы из них можно было выделить генетический материал.

Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы. .
В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли - первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.

Однако, успех сопутствовал лишь в одном из 236 опытов.
В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова).

Дальнейшие эксперименты доказали, что в некоторых случаях ядра соматических (не зародышевых) клеток способны обеспечить нормальное развитие млекопитающих (что было показано на мышах).
Однако получение клона еще не означает получения точной копии клонированного животного. Например, в случае использования приемных матерей при клонировании млекопитающих невозможно обеспечить одинаковые условия, а значит трудно говорить об абсолютной точности клонирования исходной особи. На сегодняшний день ясно, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки: одни гены активно работают, другие "молчат". И чем организм более специализирован, чем выше ступенька эволюционной лестницы, на которой он стоит, тем эти изменения глубже и труднее обратимы. .
Недавно было показано, что в соматических клетках в ходе их развития хромосомы последовательно укорачиваются на своих концах, а в зародышевых клетках специальный белок - теломераза достраивает, восстанавливает их. .
Поэтому естественен вопрос, способны ли ядра соматических клеток полностью и эквивалентно заменить ядра зародышевых клеток в их функции обеспечения нормального развития зародыша. .
Различают полное и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном - организм воссоздаётся - соответственно - не полностью. Например, лишь те или иные его ткани. Одно из перспективных применений клонирования тканей - клеточная терапия в медицине. Такие клетки могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое репродуктивное и терапевтическое клонирование.

ЗАКЛЮЧЕНИЕ.

Носителем генетической информации является ДНК – органическая структура в виде двойной спирали. Информация записана с помощью последовательности нуклеотидов. В генетическом коде используется всего лишь 4 «буквы»-нуклеотида; код един для всех живых организмов.

Генетическая информация реализуется при экспрессии генов в процессах транскрипции и трансляции. Передача генетической информации следующему поколению происходит в результате репликации (самокопирования ДНК).

СПИСОК ЛИТЕРАТУРЫ:

1. В. Н. Сойфер, Э.Р. Пилле, О. Г. Газенко, Л.В. Крушинский, С. Я. Залкинд и др. "История биологии с начала XX века до наших дней" М. 1975;
2. Бекиш О.-Я.Л. Медицинская биология. - Мн.: Ураджай, 2000. - с.114-119;

3. Мутовин Г.Р. Основы клинической генетики. - М.: Высшая школа, 1997. - с. 83-84;

4. Заяц Р.С. Основы медицинской генетики. - Мн.: Высшая школа, 1998. - с. 60-65;

5. Пехов А.П. Биология с основами экологии, 2000, 672 с;
6. Розанов С.И. Общая экология, 2003, 288 с;
7. Куклев Ю.И. Физическая экология, 2001, 359 с;
8. Николайкин Н.И. Экология Изд.2, 2003, 624 с.

  • 26.56 МБ
  • добавлен 12.12.2010

Минск: 1992. Цитологические и молекулярные основы изменчивости. Генетическая роль ДНК. Основы размножения. Закономерности наследования признаков. Генетика пола. Генетические основы индивидуального развития. Изменчивость. Структура генов и генома прокариот и эукариот. Генетическая структура популяций. Генетика человека. Генетичес...

Статьи по теме: